Synthesis of Pyrimido[4,5-b]quinolines in the Reaction of 6-Aminopyrimidines with Dimedone and Benzaldehydes

J. Quiroga*, A. Hormaza and B. Insuasty

Department of Chemistry, Universidad del Valle, A.A. 25360 Cali, Colombia

A. J. Ortíz, A. Sánchez and M. Nogueras

Department of Inorganic and Organic Chemistry, Universidad de Jaén 23071 Jaén, Spain Received May 12, 1997

The reaction of 6-aminopyrimidines 1a,b with dimedone (2) and p-substituted benzaldehydes 3a-d in ethanol afforded in all cases new regiospecific synthesis of tricyclic, linear 5-aryl-5,6,7,8,9,10-hexahydropyrimido[4,5-b]quinolines 4a-h in good yields. The linear structures and hence the regiospecificity of the reaction were established by nmr measurements.

J. Heterocyclic Chem., 35, 231 (1998).

Introduction.

The research on the dihydropyridine systems is of current interest due to their exceptional properties as calcium antagonists [1-3] and as powerful arteriolar vasodilators [4,5]. Our recent works has provided an efficient method for the synthesis of various fused heterocyclic compounds containing the dihydropyridine moiety [6-9].

In this paper we describe a versatile synthesis of novel 5-aryl-5,6,7,8,9,10-hexahydropyrimido[4,5-b]quinoline derivatives as dihydropyridine containing ring systems. There was reported a significant inhibition of dihydrofolate reductase by 5-deazafolic acid lends further support for the synthesis of this system as an analog of 5-deaza-

folic acid [10-12]. The work has resulted in development of a new direct and simple synthetic entry into the pyrimido[4,5-b]quinoline ring system.

Results and Discussions.

The preparation of pyrimido[4,5-b]quinolines 4a-h have been carried out by refluxing for 20-30 minutes equimolecular amounts of 6-aminopyrimidine 1 in absolute ethanol with dimedone 2 and the appropriate benzaldehyde derivative 3. The new compounds were obtained in good yields (see Scheme 1) as stable crystalline solids and easy purified by recrystallization from ethanol. The one-step cyclocondensation reaction can afford linear and/or angular products 4/4'.

The cyclocondensation of amines 1a,b with 2 and 3 gave regiospecifically the linear isomer, hexahydropyrimido[4,5-b]quinoline 4. In each case the reaction gave a single product as determined on tlc. The support for the linear structures of 4a-h was provided from ¹H-nmr spectra in particular with respect to the chemical shift of the 5-H and singlet of 10-H.

The ^1H -nmr spectra of compounds **4a-h** (dimethyl sulfoxide-d₆, see Table 1) contain three relatively sharp singlets at 11.90-12.33, 4.81-5.00 and 9.71-9.98 ppm for 3-H, 5-H and 10-H. We have synthesized several 5,7-diaryl-5,8-dihydropyrido[2,3-a]pyrimidines and reported the 5-H and 10-H protons at δ 4.50-4.70 and 8.20-8.50 ppm respectively [7,8]. The fact that 5-H and 10-H are not coupled is a evidence for the linear structure **4** and discard the angular **4'**. In the last one, coupling between methynic proton and NH must be observed.

In the 13 C-nmr spectra, the number of signals belonging to quaternary, tertiary, secondary and primary carbon atoms for compounds 4a-h could be determined (DEPT experiment, see Table 2). It is worth mentioning that these compounds showed in their 13 C-nmr spectra signals for C-9a and C-10a at higher δ values 150-156 ppm. In contrast, carbon atoms C-4a and C-5a appeared at unusually lower δ values, 94.8-98.1 and 108.5-109.9 ppm respectively. These findings could be accounted for by the strong push-pull effect of the amino and carbonyl groups linked to the C-4a C-10a and C-5a C-9a double bonds.

The assignment of the signals in the ¹H- and ¹³C-nmr spectra of **4a-h**, is supported by ¹H, ¹H COSY technique and ¹H, ¹³C shift correlation, as well as by comparison with data previously published for similar systems [7-9,13].

Table 1

1H NMR Data of 4a-h, δ Values in DMSO-d₆, TMS as Internal Standard

Compound	CH_3X	CH ₃ s		3-NH s	5-H s	7-CH ₂		9-CH ₂		10-NH	Phenyl	
	s					d	ld _	d	d	S	m	
4a	3.92	1.00	1.09	11.96	4.88	2.09	2.11	2.46	2.51	9.77	7.11-7.21	
4b	3.90	1.00	1.09	11.90	4.81	2.09	2.17	2.43	2.50	9.71	6.73-7.08	
4c	3.88	0.89	1.01	12.02	4.86	2.01	2.18	2.41	2.48	9.82	7.19-7.26	
4d	3.90	0.90	1.09	12.10	5.00	2.04	2.24	2.41	2.51	9.98	7.32-8.12	
4e	2.50	0.91	1.01	12.29	4.90	2.00	2.17	2.46	2.50	9.76	7.10-7.19	
4f	2.51	0.91	1.01	12.29	4.88	2.00	2.17	2.44	2.50	9.79	6.74-7.10	
4g	2.50	0.90	1.09	12.33	4.90	2.01	2.37	2.47	2.53	9.82	7.18-7.26	
4h	2.51	0.90	1.03	12.30	5.00	2.03	2.22	2.51	2.55	9.93	7.48-8.10	

 $\label{eq:Table 2} Table \ 2$ ^{13}C NMR Data of 4a-h, δ values in DMSO-d $_6$, TMS as Internal Standard

Compound	CH ₃ X	CH ₃	C-2	C-6	C-4a	C-5	C-5a	C-4	C-7	C-8	C-9	C-9a	C-10a	Phenyl			
														i	0	m	p
4a	54.6	26.6 28.8	156.5	193.9	95.9	32.0	109.7	162.0	50.2	33.5	39.9	150.9	152.3	146.8	125.6	127.5	129.4
4b	54.8	26.7 28.9	157.2	193.9	96.2	32.0	109.9	162.0	50.2	32.6	40.0	152.2	156.4	139.2	128.3	113.0	150.6
4c	54.6	26.7 28.8	156.6	193.9	95.5	32.0	109.3	162.0	50.1	33.3	40.0	151.1	152.4	145.7	127.5	129.3	130.1
4d	54.7	26.7 28.8	154.2	193.9	94.8	31.1	108.7	161.8	50.0	34.5	40.0	151.6	152.6	145.6	123.1	128.8	145.4
4e	12.6	26.7 28.9	159.5	193.8	97.9	33.5	109.5	161.5	50.1	33.5	40.5	150.9	152.1	146.7	127.4	127.6	125.7
4f	12.6	26.7 28.8	157.3	193.8	98.1	32.5	109.7	161.5	50.1	33.0	39.6	151.2	153.5	138.9	128.4	113.1	150.6
4g	12.7	26.7 28.8	160.0	193.8	97.5	32.0	109.2	161.5	50.1	33.3	39.6	151.1	151.8	145.4	127.6	129.3	130.2
4h	12.6	26.7 28.7	153.9	193.8	96.8	32.0	108.5	162.8	49.9	34.5	39.6	151.6	151.8	145.7	123.0	128.8	140.0

EXPERIMENTAL

Melting points were determined in a Buchi Melting Point Apparatus and are uncorrected. The ¹H- and ¹³C-nmr spectra were run on a Bruker DPX 300 spectrometer operating at 300 MHz and 75 MHz respectively, using dimethyl sulfoxide-d₆ as solvent and tetramethylsilane as internal standard. The mass spectra were scanned on a Hewlett Packard HP Engine-5989 spectrometer (equipped with a direct inlet probe) operating at 70 or 30 eV. The elemental analysis have been obtained using LECO CHNS-9OO equipment.

General Procedure for the Preparation of the Substituted Pyrimido[4,5-b]quinolines 4.

A solution of 1 mmole of 6-aminopyrimidine 1, 1 mmole of dimedone 2 and 1 mmole of benzaldehyde 3 in 15 ml of absolute ethanol was stirred at reflux for 20-30 minutes. The cycled products 4 were isolated by cooling, followed by filtration, washing with ethanol, drying and recrystallized from ethanol.

8,8-Dimethyl-5,6,7,8,9,10-hexahydro-2-methoxy-5-phenylpy-rimido[4,5-*b*]quinoline-4,6-dione 4a.

This compound was obtained according to general procedure as white crystals. The mass spectrum shows the following peaks: ms: (30 eV) m/z (%) 351 (M⁺, 15), 336 (2), 274 (100), 242 (7), 218 (8), 190 (6), 147 (3), 83 (5), 43 (4).

Anal. Calcd. for C₂₀H₂₁N₃O₃: C, 68.36; H, 6.02; N, 11.96. Found: C, 68.45; H, 6.13; N, 11.90.

8,8-Dimethyl-5,6,7,8,9,10-hexahydro-2-methoxy-5-(4-methoxy-phenyl)pyrimido[4,5-*b*]quinoline-4,6-dione 4b.

This compound was obtained according to general procedure as white crystals. The mass spectrum shows the following peaks: ms: (30 eV) m/z (%) 381 (M+, 24), 366 (4), 296 (4), 274 (100), 42 (6), 218 (8), 190 (5), 149 (22), 83 (25), 57 (52), 43 (57).

Anal. Calcd. for C₂₁H₂₃N₃O₄: C, 66.13; H, 6.08; N, 11.02. Found: C, 66.05; H, 6.13; N, 11.09.

5-(4-Chlorophenyl)-8,8-dimethyl-5,6,7,8,9,10-hexahydro-2-methoxy pyrimido[4,5-*b*]quinoline-4,6-dione 4*c*.

This compound was obtained according to general procedure as white crystals. The mass spectrum shows the following peaks: ms: (30 eV) m/z (%) 385 (M⁺, 16), 275 (18), 274 (100), 83 (12), 57 (16), 45 (27), 44 (56), 43 (33).

Anal. Calcd. for C₂₀H₂₀N₃O₃Cl: C, 62.26; H, 5.22; N, 10.89. Found: C, 62.35; H, 5.26; N, 10.80.

8,8-Dimethyl-5,6,7,8,9,10-hexahydro-2-methoxy-5-(4-nitrophenyl)pyrimido[4,5-b]quinoline-4,6-dione 4d.

This compound was obtained according to general procedure as pale yellow crystals. The mass spectrum shows the following peaks: ms: (70 eV) m/z (%) 396 (M+, 2), 274 (17), 218 (2), 141 (4), 83 (13), 43 (100).

Anal. Calcd. for $C_{20}H_{20}N_4O_5$: C, 60.60; H, 5.09; N, 14.13. Found: C, 60.05; H, 5.13; N, 14.20.

8,8-Dimethyl-5,6,7,8,9,10-hexahydro-2-methylthio-5-phenylpy-rimido[4,5-*b*]quinoline-4,6-dione 4e.

This compound was obtained according to general procedure as white crystals. The mass spectrum shows the following peaks:

ms: (30 eV) m/z (%) 367 (M⁺, 9), 313 (8), 290 (34), 264 (8), 236 (10), 152 (8), 83 (49), 57 (93), 43 (100).

Anal. Calcd. for $C_{20}H_{21}N_3O_2S$: C, 65.37; H, 5.76; N, 11.40. Found: C, 65.45; H, 5.73; N, 11.44.

8,8-Dimethyl-5,6,7,8,9,10-hexahydro-5-(4-methoxyphenyl)-2-methylthiopyrimido[4,5-b]quinoline-4,6-dione 4f.

This compound was obtained according to general procedure as white crystals. The mass spectrum shows the following peaks: ms: (30 eV) m/z (%) 397 (M+, 34), 382 (10), 290 (100), 242 (16), 206 (6), 186 (6), 158 (6), 83 (24), 57 (38), 43 (52).

Anal. Calcd. for $C_{21}H_{23}N_3O_3S$: C, 63.46; H, 5.83; N, 10.57. Found: C, 63.41; H, 5.73; N, 10.50.

5-(4-Chlorophenyl)-8,8-dimethyl-5,6,7,8,9,10-hexahydro-2-methylthiopyrimido[4,5-*b*]quinoline-4,6-dione 4g.

This compound was obtained according to general procedure as white crystals. The mass spectrum shows the following peaks: ms: (30 eV) m/z (%) 386 (M+-15, 4), 290 (100), 242 (13), 83 (16), 43 (20).

Anal. Calcd. for C₂₀H₂₀N₃O₂SCI: C, 59.77; H, 5.02; N, 10.46. Found: C, 59.71; H, 5.10; N, 10.40.

8,8-Dimethyl-5,6,7,8,9,10-hexahydro-2-methylthio-5-(4-nitrophenyl)pyrimido[4,5-b]quinoline-4,6-dione 4h.

This compound was obtained according to general procedure as pale yellow crystals. The mass spectrum shows the following peaks: ms: (30 eV) m/z (%) 290 (M+-C₆H₄NO₂, 14), 83 (10), 71 (10), 69 (12), 57 (23), 55 (21), 44 (100), 43 (50).

Anal. Calcd. for $C_{20}H_{20}N_4O_4S$: C, 58.24; H, 4.89; N, 13.58. Found: C, 58.31; H, 4.83; N, 13.50.

Acknowledgment.

The authors thank the COLCIENCIAS and Universidad del Valle for financial support of this work.

REFERENCES AND NOTES

- [1] F. Bossert and W. Vater, Med. Res. Rev., 9, 291 (1989).
- [2] D. J. Trigle, D. A. Langs and R. A. Janis, Med. Res. Rev., 9, 123 (1989).
- [3] A. Fleckenstein and G. Grun, Arzneim. Forsch., 22, 334 (1972).
 - [4] S. Kazda and R. Towart, Br. J. Pharmacol., 72, 582P (1981).
- [5] R. Alajarin, J. Alvarez-Builla, J. J. Vaquero, C. Sunkel, J. Fau, P. Statkow and J. Sanz, *Tetrahedron Asymetry*, 4, 617 (1993).
- [6] V. D. Orlov, J. Quiroga and N. N. Kolos, Khim. Geterosikl. Soedin., 9, 1247 (1987).
- [7] J. Quiroga, B. Insuasty, A. Sánchez, M. Nogueras and H. Meier, J. Heterocyclic Chem., 29, 1045 (1992).
- [8] J. Quiroga, B. Insuasty, M. Pungo, L. Mendoza and H. Meier, An. Quim., 90, 300 (1994).
- [9] J. Quiroga, A. Hormaza, B. Insuasty, M. Nogueras, A. Sánchez, N. Hanold and H. Meier, J. Heterocyclic Chem., 34, 521 (1997)
- [10] A. Gangjee, K. A. Ohemeng, J. J. Tulachka, F.-T. Lin and A. A. Katoh, J. Heterocyclic Chem., 22, 1149 (1985).
- [11] A. Gangjee, J. K. O'Donnell, T. J. Bardos and T. I. Kalman, J. Heterocyclic Chem., 21, 873 (1984).
- [12] S. R. Stone, J. A. Montgomery and J. F. Morrison, *Biochem. Pharmacol.*, 33, 175 (1984).
- [13] N. Martin, M. Quintero, C. Seoane, J. L. Soto, A. Mora, M. Suarez, E. Ochoa, A. Morales and J. R. del Bosque, *J. Heterocyclic Chem.*, 32, 235 (1995).